Correction to Volume Exclusion and H-Bonding Dominate the Thermodynamics and Solvation of Trimethylamine-N-oxide in Aqueous Urea
نویسندگان
چکیده
Trimethylamine-N-oxide (TMAO) and urea represent the extremes among the naturally occurring organic osmolytes in terms of their ability to stabilize/destabilize proteins. Their mixtures are found in nature and have generated interest in terms of both their physiological role and their potential use as additives in various applications (crystallography, drug formulation, etc.). Here we report experimental density and activity coefficient data for aqueous mixtures of TMAO with urea. From these data we derive the thermodynamics and solvation properties of the osmolytes, using Kirkwood-Buff theory. Strong hydrogen-bonding at the TMAO oxygen, combined with volume exclusion, accounts for the thermodynamics and solvation of TMAO in aqueous urea. As a result, TMAO behaves in a manner that is surprisingly similar to that of hard-spheres. There are two mandatory solvation sites. In plain water, these sites are occupied with water molecules, which are seamlessly replaced by urea, in proportion to its volume fraction. We discuss how this result gives an explanation both for the exceptionally strong exclusion of TMAO from peptide groups and for the experimentally observed synergy between urea and TMAO.
منابع مشابه
Mutual Exclusion of Urea and Trimethylamine N-Oxide from Amino Acids in Mixed Solvent Environment.
We study the solvation of amino acids in pure-osmolyte and mixed-osmolyte urea and trimethylamine N-oxide (TMAO) solutions using molecular dynamics simulations. Analysis of Kirkwood-Buff integrals between the solution components provides evidence that in the mixed osmolytic solution, both urea and TMAO are mutually excluded from the amino acid surface, accompanied by an increase in osmolyte-osm...
متن کاملStructure and energetics of the hydrogen-bonded backbone in protein folding.
We seek to understand the link between protein thermodynamics and protein structure in molecular detail. A classical approach to this problem involves assessing changes in protein stability resulting from added cosolvents. Under any given conditions, protein molecules in aqueous buffer are in equilibrium between unfolded and folded states, U(nfolded) <==> N(ative). Addition of organic osmolytes...
متن کاملWater-mediated interactions between trimethylamine-N-oxide and urea.
The amphiphilic osmolyte trimethylamine-N-oxide (TMAO) is commonly found in natural organisms, where it counteracts biochemical stress associated with urea in aqueous environments. Despite the important role of TMAO as osmoprotectant, the mechanism behind TMAO's action has remained elusive. Here, we study the interaction between urea, TMAO, and water in solution using broadband (100 MHz-1.6 THz...
متن کاملThermodynamics of CO2 reaction with methylamine in aqueous solution: A computational study
Separation and capture of carbon dioxide from the flue gas of power plants in order to reduceenvironmental damages has always been of interest to researchers. In this study, aqueous solution ofmethylamine was used as an absorbent for CO2 capture. In order to study this reaction, DensityFunctional Theory (DFT) was employed at the level of B3LYP/6-311++G(d,p) by using theconductor-like polarizabl...
متن کاملIs There any Possible Association Between Trimethylamine N-Oxide (TMAO) and Cancer? A Review Study
Background: During the transit of digested animal source foods, gut microbiota synthesize metabolites that can affect the body cells. One of these metabolites, i.e. Trimethylamine (TMA) that is an intermediary metabolite, ultimately leads to the production of Trimethylamine N-oxide (TMAO). Several studies have been conducted to show the association between TMAO and different diseases. This arti...
متن کامل